and 100 μm), we find good agreement with the observations independent of the chosen CSFR:

- We show that the point at 140 μm is crucial for constraining the CSFR history and seems to favour a higher comoving star formation rate at low redshifts than the UV/optically derived one; however the shape at high redshifts of the CSFR is not well constrained by the CIB measurements, contrary to previous claims;

- We suggest that the main contribution to the bulk of the CIB and more specifically to the energy at 140 μm is due to normal galaxies, lying at low and moderate redshifts, and not to distant and dusty galaxies as previously suggested;

- Concerning the history of the metal enrichment, we find that in the frame of closed-box evolution, our best-fit model to the CIB at 140 μm overpredicts the metallicity as observed in DLAs. A better agreement is obtained in the case of a model with some outflowing metal-enriched gas;

- Assuming that the ejected metal-enriched material is responsible for the IGM metallicity we derive, the IGM metal content and found it to be consistent within the error bar with the metals in the Lyα forest. However, we cannot derived conclusions regarding the IGM metal–enrichment given the large uncertainties in the data and the crudeness of our metal enrichment treatment;

- Our best-fit model to the CIB at λ = 140 overproduces the present–day stellar mass density Ω, by a factor of at least ~2 as compared to the current value. If the CIB at λ = 140 μm is correct, then this discrepancy and the excess of light at λ = 2.2 μm could be explained by our choice of Salpeter IMF. This would then be an indication in favour of an IMF which is biased toward massive stars, opening a new debate on the universality of the initial mass function. However, one may keep in mind that our calculations have been done under the assumption that the FIR/submm background is due to a stellar component only; we neglect any contribution of AGNs in dust heating, which is probably not true.

Acknowledgements. We are very grateful to A. Blanchard for fruitful discussions. We thank the referee A. Ferrara for his useful comments which helped us to improve the content of this paper. RS acknowledges support from AAS Christien Grant.

References